[EE847] AI for Electromagnetic Systems Design
Lecture 1 Introduction To ML And RL.pdf
Lecture 1
Lecture 1
Lecture 2 Perceptron And Forward Propagation.pdf
Lecture 2
Lecture 2
Lecture 3 Backward Propagation.pdf
Lecture 3
Lecture 3
Lecture 4 Entropy And Cost Functions.pdf
Lecture 4
Lecture 4
Lecture 5 Softmax And Regressions.pdf
Lecture 5
Lecture 5
Lecture 6 ML Design And Performance.pdf
Lecture 6
Lecture 6
Lecture 7 Overview Of Deep Reinforcement Learning And Alphago.pdf
Lecture 7
Lecture 7
Lecture 8 RNN And LSTM Architectures.pdf
Lecture 8
Lecture 8
Lecture 9 RNN Back Propagation Through Time.pdf
Lecture 9
Lecture 9
Lecture 10 LSTM back Propagation And Transformer Learning.pdf
Lecture 10
Lecture 10
Lecture 11 CNN.pdf
Lecture 11
Lecture 11
Lecture 12 Auto-encoder And GAN.pdf
Lecture 12
Lecture 12
Lecture 13 MDP and Bellman Equations.pdf
Lecture 13
Lecture 13
Lecture 14 Model Based Prediction And Control.pdf
Lecture 14
Lecture 14
Lecture 15 Monte Carlo And Temporal Difference Method.pdf
Lecture 15
Lecture 15
Lecture 16 Value Based DNN Agent.pdf
Lecture 16
Lecture 16
Lecture 17 Policy Based DNN Agent.pdf
Lecture 17
Lecture 17